p logica" />
a y b fx=ax²+blnx f'(1)=0 f(x)=ax²+bln(x)
f'(x)=2ax + b/x 2a+b=0 b=-2a
f(x)=ax²-2alnx
∫41f(x)dx=27-8ln(4) ∫41 (ax² - 2aln(x))dx=27-8ln(4)=
=[ax³/3 - 2a(x·lnx-x]41= 64a/3 - 8aln(4) + 8´- a/3 + 2a=
27a - 8a·ln(4) a=1 b=-2
f(x) { 1+ a/(x-2) si x<1 a+="" b/√x ="" si="">1 >
f'(x) { -a/(x-2)² si x<1 -b/2x√x ="" si="">1 >
f(1)=limx→1+f(x)= limx→1+(a + b/√x)=a+b
limx→1-f(x)=limx→1-(1+ a/(x-2)=1-a a+b=1-a 2a+b=1
f(1+)=limx→1+f'(x)=limx→1+(-b/(2x√x))=-b/2
f(1-)=limx→1-f'(x)=limx→1-(a/(x-2)²)=-a -a=-b/2 b=2a
2a+2a=4a=1 a=1/4 b=1/2
f(x)=(1-x²)e-x F(x)=I=∫(1-x²)e-xdx ∫udv=uv -∫vdz
u=1-x² dv=e-xdx du=-2xdx v=∫dv=∫e-x=-ex
(1-x²)(-e-x) -∫-e-x(-2xdx=-(1-x²)e-x -2∫xe-x=-(1-x²)e-x-2I1
I1=∫xe-xdx u=x dv=e-xdx du=dx v=-e-x
-x·e-x -∫-e-xdx= -x·e-x +∫e-xdx=-x·e-x -e-x F(x)=I=∫(1-x²)e-xdx=
-(1-x²)e-x-2I1=-(1-x²)e-x -2(-x·e-x -e-x)+k=e-x(x² +2x+1) +k
F(-1)=0 e(1-2+1) +k=0 F(x)=e-x(x²+2x+1)
triángulos A=1/2 xy y² + x²=10² y=√100-x²
A(x)=½x √100-x² A'(x)=½√100-x² + ½x ·[-2x/(2√100-x²)=
=(50-x²)/(√100-x²) A'(x)=0 50-x²=0 x=+√50 (isosceles)
y=√100-(√50)²=√50 A''(√50)=
f(x)=x²/4 g(x)=2√x
g(x) x=1 y=2 f(x) x=1 y=1/4
x²/4=2√x x4-64x=x(x³-64)=0
x=0 x=4
∫4o[(2√x)-(x²/4)]dx + ∫4o[(2x1/2)-x²/4]dx =
[(2x(1/2)+1)/(½+1)-(x³/12]4o=[(4√4³/3 -x³/12=
16√4/3 -64/12=5,33u²
f(x) 1/x + lnx f(x)=1/x+ln(x) f'(x)=-1/x² +1/x f'(x)=0
-1/x² + 1/x=0 x²=x x²-x=0=x(x-1) x=0(no) x=1
x=-1/e , x=1 , x=e extrems absoluts
f(1/e)=[1/(1/e)] + ln(1/e)= e + ln(1)-ln(e)= e - 1= 1,718
f(1)=1/1 + ln(1)=1+ ln(1)=1 f(e)= 1/e + ln(e)= (1/e) + 1 = 1,368
e - 1 max abs(x=1/e) 1 min abs(x=1) x=e y-f(e)=f'(e)(x-e)
f(x)= (1/x) + ln f'(x)= -1/x² + 1/x f(e)=(1/e) + ln(e)=2/e +1
f'(e)=(-1/e²) + 1/e y - (1/e + 1)=(-1/e² + 1/e) · (x - e)
f(x) 2x²/(x+1)(x-2) x≠1,2 limx→1+ 2x²/(x+1)(x-2)=2/0- x=-1AV
limx→2+ 2x²/(x+1)(x-2)=8/0+ x=2AV limx→+∞ 2x²/(x+1)(x-2)=
limx→+∞ 2x²/x²=2 y=2AH f'(x)=(-2x²-8x)/(x²-x-2)² x=0 x=-4
f'(-5)=<0 decr="">0><-4 >-4 >'(-2)=>0 crec -4<><0 >0 >'(1)=>0 dec x>0
f(x)=2 x=-2 (-2,f(-2))= (-2,2)